A Repository of State of the Art and Competitive Baseline Summaries for Generic News Summarization
نویسندگان
چکیده
In the period since 2004, many novel sophisticated approaches for generic multi-document summarization have been developed. Intuitive simple approaches have also been shown to perform unexpectedly well for the task. Yet it is practically impossible to compare the existing approaches directly, because systems have been evaluated on different datasets, with different evaluation measures, against different sets of comparison systems. Here we present a corpus of summaries produced by several state-of-the-art extractive summarization systems or by popular baseline systems. The inputs come from the 2004 DUC evaluation, the latest year in which generic summarization was addressed in a shared task. We use the same settings for ROUGE automatic evaluation to compare the systems directly and analyze the statistical significance of the differences in performance. We show that in terms of average scores the state-of-the-art systems appear similar but that in fact they produce very different summaries. Our corpus will facilitate future research on generic summarization and motivates the need for development of more sensitive evaluation measures and for approaches to system combination in summarization.
منابع مشابه
Company-Oriented Extractive Summarization of Financial News
The paper presents a multi-document summarization system which builds companyspecific summaries from a collection of financial news such that the extracted sentences contain novel and relevant information about the corresponding organization. The user’s familiarity with the company’s profile is assumed. The goal of such summaries is to provide information useful for the short-term trading of th...
متن کاملA Computationally Efficient System for High-Performance Multi-Document Summarization
We propose and develop a simple and efficient algorithm for generating extractive multi-document summaries and show that this algorithm exhibits stateof-the-art or near state-of-the-art performance on two Document Understanding Conference datasets and two Text Analysis Conference datasets. Our results show that algorithms using simple features and computationally efficient methods are competiti...
متن کاملOn Strategies of Human Multi-Document Summarization
In this paper, using a corpus with manual alignments of humanwritten summaries and their source news, we show that such summaries consist of information that has specific linguistic features, revealing human content selection strategies, and that these strategies produce indicative results that are competitive with a state of the art system for Portuguese. Resumo. Neste artigo, a partir de um c...
متن کاملTopical Coherence for Graph-based Extractive Summarization
We present an approach for extractive single-document summarization. Our approach is based on a weighted graphical representation of documents obtained by topic modeling. We optimize importance, coherence and non-redundancy simultaneously using ILP. We compare ROUGE scores of our system with state-of-the-art results on scientific articles from PLOS Medicine and on DUC 2002 data. Human judges ev...
متن کاملSummarization of films and documentaries based on subtitles and scripts
We assess the performance of generic text summarization algorithms applied to films and documentaries, using the well–known behavior of summarization of news articles as reference. We use three datasets: (i) news articles, (ii) film scripts and subtitles, and (iii) documentary subtitles. Standard ROUGE metrics are used for comparing generated summaries against news abstracts, plot summaries, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014